
Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 1

A Java Application for Music Visualization Through Amplitude, Frequency Extraction, and 2-D

Java Graphics

Texas A&M- Corpus Christi

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 2

Abstract

Music is a complex field of research involving mathematics, physics, and psychology.

Consequently we do not fully understand music and its influence on the mind. When we study

music, as in Music Theory, we usually think of listening and training the ear. However, music

visualization can surely help us understand music by showing musical structures and aesthetic

patterns. In this paper I document a Java application I programmed to visualize music with the

hopes of furthering musical study. Visualizing music is a tricky task. There are not many sources

for developing such systems, which shows the possible growth in this field. Moreover, even

after creating a visualizer it is still difficult to conclude that the graphics mimic the true nature of

music. In my application, I designed a Java system of circles that are fed amplitudes from song

files to change their vertical positioning. After doing so the circles seemed to show a smoothness

and direct reflection of sonic change in the song. However, the amplitudes were fed to the circles

through meaningless mathematical computation and thus I could not conclude anything more

than detection of amplitude change. This paper documents a full description of the structure of

my application.

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 3

Introduction

Music is an interesting field of research. It has been composed and used for centuries yet we still

do not fully understand it. There are academic disciplines dedicated to understanding music like

Music Theory and Musicology. We also try to branch other disciplines to music like psychology

and physics to understand its nature. Music has proven to enhance emotional states and influence

our psychological constitution. Moreover the better we can understand music the more insight

we may have into the cognitive capacities of the human mind (Gates, 2013). Visualizing music is

a field that could give us a better understanding of music than we do now. This may also help

music-education development, by providing another means of expression that in turn may lead to

faster and more intimate musical education. Music education has shown to have some type of

correlation with intellectual enhancement. In a well-known study Music lessons enhance IQ,

considered to be the first study to test the connection between music and intelligence,

Schellenberg found those exposed to music lessons tended to score higher on an IQ exams

(Schellenberg, 2004). In other studies there have been identical findings showing positive

cognitive influences from music (Catterall & Rauscher, 2008). Although, these correlations exist,

they have not been proven to show true causation and thus further investigation like visualization

is needed.

There are many ways to visualize music for example notes on a staff, which is one of the oldest

forms of visualization. Today we have many tools that readily available to take advantage of to

push music understanding farther. In particular computers give us extraordinary processing power.

Additionally graphics are a lot more accessible than ever. In this paper I will not be

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 4

deducing any kind of correlation of music to the mind but I will be illustrating an implementation

of a music-visualizing application I developed through the Java Programming Language. In this

application, I hoped to capture a fair movement of a musical piece. This paper may be viewed as

documentation and a precursor to the development of a system with the goal in mind to express

music visually.

Literature Review

Visualizing music is not an easy task. The ambiguity and subjectiveness of music leads to a not-

so-straight forward path to computing it. In order to successfully visualize music we must be able

to compute the different properties of music. In order to successfully compute these musical

properties we must first understand music in general. To understand music we must not only

understand the logical structures used in its cultivation, like number of octaves and pattern

associations with notes, but also how the listener perceives the music, this entails the emotions

and mental processes induced by external sound (Deutsch, 1984). This leads to the investigation

of deeper musical understanding which in turn leads to the investigation of music to intelligence

correlation. As noted in the introduction, there has been continues studies showing correlations

between musical instruction and intelligence but no proven causation for intelligence (Catterall

& Rauscher, 2008). Since the logical properties of music are the basis to its construction, which

without a listener may not enjoy and experience psychological symptoms, these logical

properties will be the goal when developing this system. There are many tools available that we

can use to create a music visualizer. Tools that allow graphical rendering as well as audio

processing, however, all tools give different degrees of functionality to the user. Adobe

AfterEffects from Adobe, is an example of a high level application capable of stunning graphical

capabilities. Adobe AfterEffects provides a film-editing interface, giving the user the ability to

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 5

create just about any effects imaginable. This application comes with relatively simple audio

processing done in the background with applied to the effects created by the user (Adobe Systems

Incorporated, 2017). Although Adobe effects give beautiful end products, it does not give much

control to the user in how to utilize audio processing for custom computing. Thus we must look into

lower-level tools giving the user the ability to develop their own computing procedures. Imperative

programming languages satisfy this need. The programming language C++ is the forefront of major

applications used today. This language is arguably a lower-level language as it give the programmer

more control of memory space which directly contributes to it’s powerful capabilities. Some

applications that are written in C++ are Adobe products (like Photoshop, illustrator, AfterEffects,

etc.), Facebook (major social media outlet), MySQL (most popular open source database software),

many Microsoft applications such as Microsoft Office (this includes Word, Excel, and Powerpoint)

as well as their Windows operating systems (Windows Vista, Windows Xp, etc.) (Stroustrup, 1997).

C++ is powerful robust language and clearly capable of developing extensive programs. Most

importantly with regards to graphical rendering, C++ can take advantage of OpenGL. OpenGL is

widely used graphics API giving C++ programs extensive libraries for developing graphics. OpenGL

is also powerful allowing a lot of control over the graphic processing unit (GPU) (OpenGL, 2017).

To put things into perspective, C++ along with OpenGL contribute to the beautiful end products of

Adobe AfterEffects (Stroustrup, 1997). On the other hand Java is lighter but less powerful

programming language that still gives the programmer the capabilities to develop complex software.

Java increases the distance between the programmer and memory removing certain capabilities that

one could do in C++. This contributes to Java being less powerful but safer, keeping the programmer

from crashing their application. Java is also lighter, C++ when compiled and

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 6

running is linked and heavily associated with the machine it is running on, in contrast Java will

compile once and then interpreted by a virtual machine (VM) that can be on any machine, hence

platform independent. Java is also capable of graphical programming giving everything

necessary for audio visualization (Gosling et al., 2013). Although Java is initially not

recommended for graphical programming (except for basic GUIs) there has been improvements

such as JavaFx giving this language more graphical functionality and ability to use the full

potential of Java graphics (Vos et al., 2014).

Aside from the various tools available to us for computing musically influenced

graphics, there has been various methods taken to visualize music. A common notion when

investigating music is that it seems to exhibit behavior similar to physics. In a music theory book

“The Structure Of Music: a listener’s guide” by Robert Erickson, he describes melody as having

a body in motion. Along with this melodic body come the natural physical attributes such as

weight, inertia, and momentum that we’d expect when dealing with physical objects. These

characteristics can be perceived by listening to the melodic body move in a specific direction

(meaning hearing notes consecutively and harmoniously played) and once pulling away from the

initial direction tension is built and must be resolved. Robert compares the moving melody with

a moving football player as he runs down the field constantly changing direction (Erickson,

1955). Other physical relationships that seem to be consistent with human perception are

frequency-shape size (higher frequency the smaller the object) and amplitude-brightness (the

higher the amplitude the brighter the object is). This connection to physical characteristics shows

a possible path for truly visualizing music (Jones & Nevile, 2017). Additionally, color is an

immediate association with music. There have been countless studies on music-to-color

synesthesia, the disorder of seeing or attributing colors to specific musical tones (Synesthesia,

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 7

2017). This idea became the interest of many researchers yet there still has not been a consensus

to true connection between music and colors. Nonetheless, color has been a major role in the

development of music visualizers. For instance in a research conducted by, Klemenc, Ciuha,

Subelj and Bajec, they were interested in solely relating tones with colors. They craft fully

associated specific colors to tones so that related tones, like C and G, would be the same color or

complementary colors. There aims were to show the harmonic structures in pieces of music with

the visual aid of color (Klemenc et al., 2011). In another research by, Craig Stuart Sapp, color

was used simply as an identifier to distinguish different key changes within a piece of music

once plotted on a keyscape plot. Even though the colors were not meaningfully attached to a

specific key, they still helped visualize the music to help identify key variation and structure

within the song (Noy & Noy-Sharav, 2013).

Methodology

Overview

At the begging of this project I intended to develop a 3-D visualizer with the programming language

C++ utilizing OpenGL. I initially chose this language because of the capabilities it had. I knew I

would be able to access graphical libraries to develop interesting visuals and I would be able to

render 3-D models while continuously processing audio without crashing the program (assuming I

allocate memory correctly). I first started with OpenGL tutorials and managed to revers engineer

some OpenGL programs to suite my needs. I was able to access audio files and feed the information

into my program. However, programming with C++ in OpenGL proved to be very difficult and I

started plateauing in progress both in graphical development and audio processing. As time

constraints pressed against me, I eventually decided to tackle this objective

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 8

using the programming language Java. Java is a relatively easier language as the programmer has

less responsibility to managing direct memory allocation. Consequently, I began to focus on 2-D

visualization, putting less priority on the graphics and more on the computation.

Application Design

When programming this visualizer, I utilized NetBeans as my Integrated Development

Environment (IDE). NetBeans allows me to easily write, run, and debug my java applications by

showing available functions in libraries, highlighting syntactical errors, and a run button to run

the entire project. Along with this development I utilized three audio files, which I will refer to

them as songs; C-Scale with skips, Octave Changes, and Chopin- Nocturne in E-flat major, Op.

9, No. 2. Chopin- Nocturne is the main song I used throughout the application development, as it

produces a plethora of different piano keys and chords that I predicted would look aesthetically

appealing if visualized correctly. C-Scale with skips and Octave Changes were used to clearly

distinguish low to high change within the visualizer. These songs are grabbed from a file on my

desktop every time the application runs. Consequently I was trying to utilize Fast-Fourier

Transformation (FFT) algorithms to achieve frequency data within my application (James,

2011). However, I was unable to accomplish this task and thus I utilized MatLab’s functionality

to get the appropriate frequencies. MatLab became very useful at this point because I was able to

pass my audio files to MatLab and directly use its FFT built in functions. I was then able to

create spectrograms to all audio files illustrating the frequency behavior over time in the files

(MathWorks, 2017). The x-axis represents the time in the song, y-axis is the frequency rand and

the colors represent the strength of that particular frequency at that particular time period.

Yellow is the most intense frequency present at each time interval.

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 9

(Figure 1; Spectrogram of C-Scale with skips; Notes C-E-G-B-D-B-G-E-C)

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 10

(Figure 2; Spectrogram of Octave Changes)

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 11

(Figure 3; Spectrogram Chopin- Nocturne in E-flat major, Op. 9, No. 2)

To make sure the frequencies were correct, I used Audacity, a sound processing application, to

run spectral analysis that plots the frequency over amplitude. As you can see the immense

number of frequencies detected less than 5000 Hz in Audacity shown in figure-4 is reflected in

the spectrogram in figure-3 above.

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 12

(Figure 4; Frequency Analysis in Audacity of Chopin- Nocturne in E-flat major, Op. 9, No. 2)

Furthermore, I am only interested in the most intense points in the spectrogram (marked in yellow)

at each time period. I then calculated a line graph that went through the strongest frequency at each

time period using MatLab’s functions provided by their documentation (MathWorks, 2017). In

figure 5, you can see the line graph achieved for Octave-Change after. I then took every x and y

coordinate, in this case time interval and frequency respectively, and exported them to their separate

text files. On text file for all the time intervals and all the frequency values in another. I separated

them into two distinct files because I was only going to use the frequency values for the application;

however, I needed to observer behavior of time intervals to reflect the frequency against the song as

it is plays (which never worked out as I will

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 13

discuss later in this paper). I continued this process for each song resulting in 6 different

text files.

(Figure 5; Line Graph of Octave Changes)

Ultimately, the relational structure of this system will include the main program (Java

Application), which will fetch locally stored music files and locally stored MatLab frequency

information. Below, in figure 6, is a general class diagram showing this systems structure.

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 14

(Figure 6; General Class Diagram)

Furthermore, I aimed to develop a very simple visualizer with simple graphical components. I

decided that rendering small circles having only vertical motions would allow possible

investigation into musical structures. Additionally allowing the capabilities to change songs and

effects while the program was still running would make it easier to spot differences when using

the program. The following, in figure 7, is a screen shot of the initial stage of my program.

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 15

(Figure 7; Initial state of Application)

Java is an object-oriented programming language and thus when programming in java

you must make everything into classes. Classes are essentially large data structures

encompassing related data associated together to represent that class as a whole. In this Java

program, I developed five different classes MainWindow, UpdateGUI, CircleGenerator, Circle,

and PopUpMenu. The MainWindow is the main class of this program containing all the main

functionality that will conduct the audio processing and graphical influence. UpdateGUI is an

inner class of the MainWindow, meaning this class is completely defined within MainWindow.

This class is nested in the main class to implement multi-threaded functionality. It is important to

implement multi-thread processing when dealing with graphics because graphics in motion

requires constant re-drawing which will take the entire processing time for a single thread

leaving no time for any other computation. Circle class defines the properties of the circles

created to in this program and CircleGenerator is a class that is able to utilize the circle class and

create multiple circles. Lastly, PopUpMenu is the class defining the menus that are created when

using the program like changing the song or effect in the visualizer. The following is a more

detailed class diagram illustrating each class with their properties and their relationship with each

other.

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 16

(Figure 8; Class Diagram of application)

Class Specification

In this section I will discuss the detail structures of each class. This will include

their local variables and methods as well as their associations with other classes.

MainWindow Class. MainWindow class extends the JavaFX library Application giving

this class access to Application’s public variables and methods. The purpose of using

Application is to utilize its launch method, which will run the start method continuously without

having to write an infinite loop to keep the graphical window from terminating. Thus all major

processing is implemented in this start method. MainWindow class defines the basic attributes

for the window to hold our visualization. This is done through a JFrame object (object to create

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 17

graphical frames), JButton objects, and frame size parameters, which I set to 1000 by 600 pixels.

I also must define a Media object and MediaPlayer object, which are both defined by JavaFX.

These allow me to grab media, in this case a song, to embed into my program. Lastly, I must also

define a CircleGenerator object in which I will utilize to generate all the Circle objects in my

program.

In the start method of the MainWindow class, the method first defines all the

specifications of the GUI as well as preliminary data setup. This includes creating the visual

frame, the buttons for using the program with their defined functionality. Most importantly, the

nested class UpdateGUI is defined in this method. UpdateGUI class is here to handle all the

graphical updating within a different thread. The pseudo code for MainWindow is provided

below.

INITIALIZE

Frame deminesions

JFrame, Jbutton, CircleGenerator, Media, MediaPlayer

Source

EffectChoice

FINALIZE INITIALIZATION

JFrame, CircleGenerator

Media(source) -> pass file path to the Media object

MediaPlayer(Media) -> pass Media object to the MediaPlayer Object

FINIALIIZE Jbuttons

ADD buttons to the JFrame

DEFINE Inner Class UpdateGUI (this conduct all the animation)

INITIALIZE an instance of UpdateGUI

RUN the instance of UpdateGUI (this is a separate thread)

(Figure 9; MainWIndow Pseudo code)

UpdateGUI Class. UpdateGUI class extends the Thread class giving this object access

to multi-thread functionality. When creating an object of this class, this object can be enacted

with the start method. Once starting the object the run method defined inside UpdateGUI will

execute in a separate thread. This is similar to the structure of Application-launch-start structure

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 18

discussed in MainWindow class. Within this run method I have defined all the graphical

manipulation. Run first distinguishes what kind of effect the user wants on the visualizer and

then proceeds with processing. There are three different effects, random movement, random

movement with gravity, and frequency (the GUI is fed the frequency values for the specified

song through the text file that the values were previously stored in). They have similar

processing procedures except with the gravity effect the circles will continually fall when they

are not passed amplitude values. This is the same for frequency effect; all circles will fall if their

corresponding frequency is not inputted. As a side note, the gravity and frequency fetching must

be handled with another thread or this would conflict with the initial graphical processing.

Furthermore, the procedure for audio processing involves the JavaFX defined methods

AudioListeners. This family of methods gives functionality to listen to the audio and gather data

from it like amplitude. In this case I am using the AudioSpectrumListener to gather the amplitude

of the audio as the song is played. AudioSpectrumListener will continuously grab 128 samples

when listening to the song and then repeat until the song is over. I then grab these amplitude

values and apply them to the graphic circles, specifically their vertical position in the frame.

Moreover I have to apply these values differently to all circles. If I simple did the same

computation in the loop to all circles then they would all move in a synchronous manner. Thus I

used each circles’ index in the ArrayList in the processing to get a different value for each circle.

In the frequency thread, it was not necessary to loop through every circle and change their

position accordingly. Instead, I assigned each circle to corresponding frequency ranges.

According to my frequency gathering the lowest sensed frequency was 172Hz and the highest

could not be higher than 22000Hz. Thus my initial computation to assign circles to frequency

values was to first round the incoming frequency from the text file then divide this number by

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 19

546. Since my frequency value will always be between 172Hz and 22000Hz, there can be 21828

different possible values (22000 – 172 = 21828). I have 40 circles drawn for this application

which means every 545.7 intervals there should be a circle if we lay the frequency data on our

circles. I simply adjust the computation to make it even by adding 12 more possible frequency

values (21828 + 12 = 21840) and then after the same division I get 546 instead of 545.7. I then

round this calculation to find the index of the corresponding circle. Additionally, this

computation does not work for Hz under 273, (273 / 546 = 0.5), as the number would round to

zero. Therefore, I added a filter to only adjust circle is the incoming Hz was between 273 and

21840. Moreover, as this program runs I must repaint the frame periodically to see the changes in

the frame. The pseudo code for UpdateGUI and the significant threads defined in this class are

provided below.

INITIALIZE

typeOfEffect

file (containing frequency values)

BufferReader -> reading the values for file

DEFINE Thread Objects gravityThread and frequencyThread

INPUT typeOfEffect

Case based on typeOfEffect

Case == 1

randomChange

Case == 2

randomChange with gravity

Case == 3

frequencyChange

Default

Output Error

END Case

(Figure 10; UpdateGUI Pseudocode)

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 20

WHILE True

FOR all circles in the Circle List

DEFINE bottom of circle = (circle center + circle radius)

If ((bottom of circle) < (bottom of frame))

Circle.Y = Circle.Y + 5

END-IF

ELSE

Circle.Y = Bottom of Frame -

Circle.Radius END-ELSE

RepaintGUI

Thread.Sleep(200)

END-FOR

END-WHILE

(Figure 11; gravityThread Pseudo code)

INITIALIZE

BufferReader with file

currentValue = 0

index = 0

roundedHz = 0

WHILE read from file

currentValue = read value

roundedHz = round currentValue

IF (roundedHz < 2000)

index = round(roundedHz / 50)

IF(Circle.Y - Circle.Radius > 0)

Circle.Y = Circle.Y - 3

END-IF

END-IF

IF ((roundedHZ > 273) && (RoundedHz < 21840))

index = round(roundedHz / 546)

IF(Circle.Y - Circle.Radius > 0)

Circle.Y = Circle.Y - 3

END-IF

END-IF

END-IF

END-WHILE

(Figure 12; frequencyThread Pseudo code)

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 21

Circle and CircleGenerator Class. Circle class defines all the attributes of an individual

circle. This includes the width, height, radius, x-y coordinates, and colors of the circle. I do not

explicitly define the parameters of the circle in this class but I designed it so that any parameters

may be passed to create any size, position, and color when creating an object of this class.

CircleGenerator class is the class that creates objects of the Circle class. CircleGenerator

defines the size of the circle and an ArrayList to hold all the circle objects. This ArrayList will

allow me to cycle through the circle objects and update them all in a loop. Once I create an

object of the CircleGenerator, a loop within this class will generate 40 circles and add them to

the list. The pseudo code for Circle & CircleGenerator is provided below.

INITIALIZE

Circle_Width

Circle_Height

Circle_Radius

ArrayList CircleList

FOR every multiple of 25, i, in 1000 (40 Circles)

CircleList.add(Circle(Circle_Width, Circle_Height, Color.BLUE, i, 500))

END-FOR

(Figure 13; CircleGenerator Pseudo code)

PopUpMenu. PopUpMenu is a more trivial class. This object simply defines the menu

that pops up after clicking one of the menu options. This is subject to change, as I will be adding

different effects to the visualizer once a successful implementation is constructed. The following

is an example popup menu that this class defines.

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 22

(Figure 14; PopUpMenu Example)

Evaluation & Discussion

Throughout the implementation process I’ve continually tested the application to achieve some

type of connection with the musical data. Both the random effect and gravity-random effect seem

to show some type of connection with the music being played. In both effects the circles will

move according to a difference in amplitude regardless of the mathematical change to the

amplitude (excluding a multiplication of zero). Meaning you can multiply the vertical positing by

5 or 10 and you will still see the change showing primitive behavior in the music. This carries

the circles to mimic the impact of the notes being played. During high intensity, the circles will

change vertical positioning accordingly, showing clusters of fast and shorts burst of movement.

When enacting gravity in the gravity-random effect, silence is better visualized than no gravity.

When a song pauses for a few seconds (or you can simply click the stop button for ultimate

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 23

silence) then all the circles will fall showing a natural perception of calming. This shows a

better overall picture of the music.

The frequency effect was a lot more challenging to visualize. There were no frequency

variables provided by AudioSpectrumListener, like there was for amplitude, and thus I had to get

these values on my own. Consequently, I had to use MatLab to get these values, store them into

text files and then retrieve them form these textfiles when I wanted to use them. After creating a

frequency scheme to fit with my 40 circles (I explained this computational scheme in

Methodology), I realized that this schemes was not that great. I could see higher frequency

circles rising and lowering but after a few seconds they would stop and the lowest 3 frequency

circles would only move. I had to adjust the frequency filtering to only allowing frequencies

between below 2000Hz, which gave the behavior of the lower frequencies. However this

excluded the higher frequencies that were apparent in before. There needs to be a better

frequency filtering algorithm to show the true behavior, such an algorithm would most likely

require more circles as with such a small range of circles the less individual frequencies will be

visualized. Additionally, I needed to time the frequency change according to the song, however, I

was unsuccessful in doing this at the moment, as this requires perfect timing and would be very

difficult to conclude if it was accurate to the song to draw any conclusions. I would have to be

able to extract frequencies through the actual song as I do with amplitudes to get this type of

relationship.

Conclusion & Future Work

In conclusion, we have talked about the music visualizer and what exactly are the requirements

to build a visualizer. We have gone through some of the most popular and powerful tools that are

available for graphical processing with audio interaction. We have talked about common

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 24

methodologies taken to visualize music. I then introduced my Java application and it’s different

specifications along with its logical design. This included the description of all the classes and

relational structure used for this application. Following these specifications we reviewed the

results/observations of my final product. Regarding the three different effects I implemented the

random effect showed impact of musical influence, the gravity added to the random effect added

visual effects for silence, and frequency fed influence simply showed the frequencies used

through out the song but did not seem to show full structure. For future work, this definitely

needs to be explored with C++ and OpenGL. I think if this was applied to 3-D graphics we could

experience a more stunning visual and explore the possible connection between the enjoyments

of listening to aesthetics. Additionally more developed algorithms will need to be produced for

manipulating these graphics. Specifically with frequency use, frequency gathering and with its

use should be taken care of in the same program instead of using outside applications. This

should be done while the song is playing as well to get a better visual of the frequencies being

used and when they are being used. Additionally, I’ve successfully captured primitive change in

a song but I have not captured meaning behind this change. This requires a more extensive study

into music theory to apply musical concepts and composer ideology to find an appropriate

algorithm. However, my application may give a starting point for developing a music visualizer

with the meaningful algorithms. In regard to the study by Schellenberg, this could give a better

image of the music, adhering to our psychological and physiological interpretations of sound,

which may unveil the correlation between music and intelligence.

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 25

References

Adobe Systems Incorporated. (2017). Retrieved from

http://www.adobe.com/products/aftereffects.html

Catterall J.S., & Rauscher F.H. (2008). Unpacking the impact of music on intelligence. In W

Gruhn and FH Rauscher (Eds.). Pp 171-201. Neurosciences in music pedagogy.

Nova Science Publishers, New York.

Deutsch, D. (1984). Psychology and Music. In M.H. Bornstein (Ed.). Psychology and its

Allied Disciplines (155-194). Hillsdale: Erlbaum.

Erickson, R. (1955).The Structure of Music: a study of music in terms of melody and

counterpoint. New York: Noonday Press.

Gates, J, T. (2013). Why Study Music?. In Micheal L. Mark (Eds.), Music Education (148-150).

New York: Taylor & Francis Group.

Gosling, J., Joy, B., Steele, G., Bracha, G., & Buckley, A. (2013). The Java Language

Specification: Java SE 7 Edition. Redwood City, California: Oracle.

James J. F. (2011). A Student’s Guide to Fourier Transforms with Applications in Physics

and Engineering. New York: Cambridge University Press.

Jones, R., & Nevile B. (2017). Creating Visual Music in Jitter: Approaches and Techniques.

Computer Music Journal, Vol. 29, No. 4, Visual Music, pp. 55-70.

Klemenc, B., Ciuha, P. Subelj, L., & Bajec, M. (2011). Visual and Aural: Visualization of

Harmony in Music with Colour. The IPSI BgD transactions on internet research, Vol. 7,

no. 1, str. pp. 48-53.

MathWorks. (2017). Spectrogram. Retrieved from

https://www.mathworks.com/help/signal/ref/spectrogram.html

Running head: JAVA APPLICATION FOR MUSIC VISUALIZATION 26

Noy, P., & Noy-Sharav, D. (2013). Art and Emotions Art and Emotions. International Journal

Of Applied Psychoanalytic Studies, 10(2), 100-107. doi:10.1002/aps.1352

OpenGL. (2017). OpenGL Overview. Retrieved from https://www.opengl.org/about/ Stroustrup,

B. (1997). The C++ Programming Language. Murray Hills, New Jersey: Addison-

Wesley. Retrieved from

https://is.muni.cz/www/408176/38744863/The_C__Programming_Language__Stroustrup

_.pdf

Schellenberg, E.G. (2004). Music lessons enhance IQ. Psychological Science, 15, 511-514.

Synesthesia. (2017). In Encyclopedia Britannica. Retrieved from

http://academic.eb.com.manowar.tamucc.edu/levels/collegiate/article/synesthesia/70751

Vos, J., Gao, W., Chin, S., Iverson, D., & Weaver, J. (2014). Pro JavaFX: A Definitive Guide to

Building Desktop, Mobile, and Embedded Java Clients. :Apress.

